4.4 Review

Light management in dye-sensitized solar cell

期刊

KOREAN JOURNAL OF CHEMICAL ENGINEERING
卷 27, 期 2, 页码 375-384

出版社

KOREAN INSTITUTE CHEMICAL ENGINEERS
DOI: 10.1007/s11814-010-0112-z

关键词

Dye-sensitized Solar Cell; Light Harvesting; Light Scattering; Bi-functional; Panchromatic

向作者/读者索取更多资源

Dye-sensitized solar cell (DSSC) is composed of a nanocrystalline TiO2 film whose surface is covered with dye molecules, an iodide/tri-iodide electrolyte and a platinum counter electrode. Charge generation occurs when dye absorbs photon energy, which is separated by injection of photo-excited electrons into the conduction band of TiO2,. The photo-injected electrons are transported through TiO2, network and collected at transparent conducting electrode. The oxidized dyes are regenerated by oxidation of iodide. Light-to-electricity conversion efficiency depends on photocurrent density, open-circuit voltage and fill factor. Photocurrent density is related to the incident photon-to-current conversion efficiency (IPCE) that is a collective measure of light harvesting, charge separation and charge collection efficiency. Since the higher IPCE, the higher photocurrent density becomes, light management in DSSC is one of most important issues. In this paper, effective methods to improve IPCE are described including size-dependent light scattering effect, bi-functionality design in material synthesis and panchromatic approach such as selective position of different dyes in a mesoporous TiO2, film.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据