4.5 Article

A weighted voting framework for classifiers ensembles

期刊

KNOWLEDGE AND INFORMATION SYSTEMS
卷 38, 期 2, 页码 259-275

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s10115-012-0586-6

关键词

Classifier ensembles; Combination rules; Weighted majority vote; Recall; Naive Bayes

向作者/读者索取更多资源

We propose a probabilistic framework for classifier combination, which gives rigorous optimality conditions (minimum classification error) for four combination methods: majority vote, weighted majority vote, recall combiner and the naive Bayes combiner. The framework is based on two assumptions: class-conditional independence of the classifier outputs and an assumption about the individual accuracies. The four combiners are derived subsequently from one another, by progressively relaxing and then eliminating the second assumption. In parallel, the number of the trainable parameters increases from one combiner to the next. Simulation studies reveal that if the parameter estimates are accurate and the first assumption is satisfied, the order of preference of the combiners is: naive Bayes, recall, weighted majority and majority. By inducing label noise, we expose a caveat coming from the stability-plasticity dilemma. Experimental results with 73 benchmark data sets reveal that there is no definitive best combiner among the four candidates, giving a slight preference to naive Bayes. This combiner was better for problems with a large number of fairly balanced classes while weighted majority vote was better for problems with a small number of unbalanced classes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据