4.2 Article

WELL-BALANCED SCHEMES USING ELEMENTARY SOLUTIONS FOR LINEAR MODELS OF THE BOLTZMANN EQUATION IN ONE SPACE DIMENSION

期刊

KINETIC AND RELATED MODELS
卷 5, 期 2, 页码 283-323

出版社

AMER INST MATHEMATICAL SCIENCES-AIMS
DOI: 10.3934/krm.2012.5.283

关键词

Slow rarefied flow; well-balanced scheme; elementary solutions; analytical discrete-ordinates method; integral equation of the third kind

向作者/读者索取更多资源

In the kinetic theory of gases, a class of one-dimensional problems can be distinguished for which transverse momentum and heat transfer effects decouple. This feature is revealed by projecting the linearized Boltzmann model onto properly chosen directions (which were originally discovered by Cercignani in the sixties) in a Hilbert space. The shear flow effects follow a scalar integro-differential equation whereas the heat transfer is described by a 2 x 2 coupled system. This simplification allows to set up the well-balanced method, involving non-conservative products regularized by solutions of the stationary equations, in order to produce numerical schemes which do stabilize in large times and deliver accurate approximations at numerical steady-state. Boundary-value problems for the stationary equations are solved by the technique of elementary solutions at the continuous level and by means of the analytical discrete ordinates method at the numerical one. Practically, a comparison with a standard time-splitting method is displayed for a Couette flow by inspecting the shear stress which must be a constant at steady-state. Other test-cases are treated, like heat transfer between two unequally heated walls and also the propagation of a sound disturbance in a gas at rest. Other numerical experiments deal with the behavior of these kinetic models when the Knudsen number becomes small. In particular, a test-case involving a computational domain containing both rarefied and fluid regions characterized by mean free paths of different magnitudes is presented: stabilization onto a physically correct steady-state free from spurious oscillations is observed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据