4.7 Article

Tomographic quantification of branching morphogenesis and renal development

期刊

KIDNEY INTERNATIONAL
卷 77, 期 12, 页码 1132-1139

出版社

ELSEVIER SCIENCE INC
DOI: 10.1038/ki.2010.42

关键词

genetics and development; kidney development; renal development

资金

  1. National Health & Medical Research Council (NHMRC)
  2. Fluorescent Applications in Biotechnology and Life Sciences

向作者/读者索取更多资源

Branching morphogenesis is a central process in renal development, but imaging and quantifying this process beyond early organogenesis presents challenges due to growth of the kidney preventing ready imaging of the complex structures. Current analysis of renal development relies heavily on explant organ culture and visualization by confocal microscopy, as a more developmentally advanced native tissue is too thick for conventional microscopic imaging. Cultured renal primordia lack vascularization and a supportive matrix for normal growth, resulting in tissue compression and distortion of ureteric branching. To overcome this, we used optical projection tomography to image and reconstruct the branching ureter epithelium of ex vivo embryonic kidneys and developed software to quantify these three-dimensional (3D) data. Ureteric branching was assessed by measuring tree and terminal branch length, tip number, branching iterations, branch angles, and inter-tip distances in 3D space. To validate this approach for analyzing genetic influences on renal development, we assessed branching and organ morphology in Tgf beta 2(+/+) embryos from E12.5 through E15.5. We found decreased branching, contrary to previous findings using organ culture, and quantified a primary defect in renal pelvic formation. Our approach offers many advantages from improved throughput, analysis, and observation of in vivo branching states, and has demonstrated its utility in studying the basis of renal developmental disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据