4.7 Article

Self-adaptive check and repair operator-based particle swarm optimization for the multidimensional knapsack problem

期刊

APPLIED SOFT COMPUTING
卷 26, 期 -, 页码 378-389

出版社

ELSEVIER
DOI: 10.1016/j.asoc.2014.10.030

关键词

Combinatorial optimization; Self adaptive check and repair; Multidimensional knapsack problem; Particle swarm optimization; Pseudo-utility ratio; OR-Library

向作者/读者索取更多资源

The multidimensional knapsack problem (MKP) is a combinatorial optimization problem belonging to the class of NP-hard problems. This study proposes a novel self-adaptive check and repair operator (SACRO) combined with particle swarm optimization (PSO) to solve the MKP. The traditional check and repair operator (CRO) uses a unique pseudo-utility ratio, whereas SACRO dynamically and automatically changes the alternative pseudo-utility ratio as the PSO algorithm runs. Two existing PSO algorithms are used as the foundation to support the novel SACRO methods, the proposed SACRO-based algorithms were tested using 137 benchmark problems from the OR-Library to validate and demonstrate the efficiency of SACRO idea. The results were compared with those of other population-based algorithms. Simulation and evaluation results show that SACRO is more competitive and robust than the traditional CRO. The proposed SACRO-based algorithms rival other state-of-the-art PSO and other algorithms. Therefore, changing different types of pseudo-utility ratios produces solutions with better results in solving MKP. Moreover, SACRO can be combined with other population-based optimization algorithms to solve constrained optimization problems. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据