4.7 Article

Mice that overexpress human heat shock protein 27 have increased renal injury following ischemia reperfusion

期刊

KIDNEY INTERNATIONAL
卷 75, 期 5, 页码 499-510

出版社

ELSEVIER SCIENCE INC
DOI: 10.1038/ki.2008.572

关键词

inflammation; keratinocyte-derived cytokine; lymphocyte; natural killer cells; neutrophil

资金

  1. National Institutes of Health [RO1 DK-58547]

向作者/读者索取更多资源

We previously showed that activation of the A1 adenosine receptor protected the kidney against ischemia-reperfusion injury by induction and phosphorylation of heat shock protein 27 (HSP27). Here, we used mice that overexpress human HSP27 (huHSP27) to determine if kidneys from these mice were protected against injury. Proximal tubule cells cultured from the transgenic mice had increased resistance to peroxide-induced necrosis compared to cells from wildtype mice. However, after renal ischemic injury, HSP27 transgenic mice had decreased renal function compared to wild-type mice, along with increased renal expression of mRNAs of pro-inflammatory cytokines (TNF-alpha, ICAM-1, MCP-1) and increased plasma and kidney keratinocytederived cytokine. Following ischemic injury, neutrophils infiltrated the kidneys earlier in the transgenic mice. Flow cytometric analysis of lymphocyte subsets showed that those isolated from the kidneys of transgenic mice had increased CD3(+), CD4(+), CD8(+), and NK1.1(+) cells 3 h after injury. When splenocytes or NK1.1(+) cells were isolated from transgenic mice and adoptively transferred into wild- type mice there was increased renal injury. Further, depletion of lymphocytes by splenectomy or neutralization of NK1.1(+) cells resulted in improved renal function in the transgenic mice following reperfusion. Our study shows that induction of HSP27 in renal tubular cells protects against necrosis in vitro, but its systemic increase counteracts this protection by exacerbating renal and systemic inflammation in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据