4.7 Article

Vasoprotective Effects of Life Span-Extending Peripubertal GH Replacement in Lewis Dwarf Rats

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/gerona/glq147

关键词

Oxidative stress; GH deficiency; GH replacement; Vasoprotection; IGF-1 deficiency

资金

  1. National Institutes of Health [HL-077256, P01 AG11370]
  2. American Diabetes Association
  3. American Federation for Aging Research
  4. Donald W. Reynolds Foundation

向作者/读者索取更多资源

In humans, growth hormone deficiency (GHD) and low circulating levels of insulin-like growth factor 1 (IGF-1) significantly increase the risk for cerebrovascular disease. Genetic growth hormone (GH)/IGF-1 deficiency in Lewis dwarf rats significantly increases the incidence of late-life strokes, similar to the effects of GHD in elderly humans. Peripubertal treatment of Lewis dwarf rats with GH delays the occurrence of late-life stroke, which results in a significant extension of life span. The present study was designed to characterize the vascular effects of life span-extending peripubertal GH replacement in Lewis dwarf rats. Here, we report, based on measurements of dihydroethidium fluorescence, tissue isoprostane, GSH, and ascorbate content, that peripubertal GH/IGF-1 deficiency in Lewis dwarf rats increases vascular oxidative stress, which is prevented by GH replacement. Peripubertal GHD did not alter superoxide dismutase or catalase activities in the aorta nor the expression of Cu-Zn-SOD, Mn-SOD, and catalase in the cerebral arteries of dwarf rats. In contrast, cerebrovascular expression of glutathione peroxidase 1 was significantly decreased in dwarf vessels, and this effect was reversed by GH treatment. Peripubertal GHD significantly decreases expression of the Nrf2 target genes NQO1 and GCLC in the cerebral arteries, whereas it does not affect expression and activity of endothelial nitric oxide synthase and vascular expression of IGF-1, IGF-binding proteins, and inflammatory markers (tumor necrosis factor alpha, interluekin-6, interluekin-1 beta, inducible nitric oxide synthase, intercellular adhesion molecule 1, and monocyte chemotactic protein-1). In conclusion, peripubertal GH/IGF-1 deficiency confers pro-oxidative cellular effects, which likely promote an adverse functional and structural phenotype in the vasculature, and results in accelerated vascular impairments later in life.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据