4.7 Article

Numerical simulation of atmospheric pollutant dispersion in an urban street canyon: Comparison between RANS and LES

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jweia.2010.12.002

关键词

CFD; Pollutant dispersion; Street canyon; LES; RANS

资金

  1. Institution of Mechanical Engineers (IMechE)
  2. Graduate School, University of Nottingham

向作者/读者索取更多资源

Prediction accuracy of pollutant dispersion within an urban street canyon of width to height ratio W/H=1 is examined using two steady-state Reynolds-averaged Navier-Stokes (RANS) turbulence closure models, the standard k-epsilon and Reynolds Stress Model (RSM), and Large Eddy Simulation (LES) coupled with the advection-diffusion method for species transport. The numerical results, which include the statistical properties of pollutant dispersion, e.g. mean concentration distributions, time-evolution and three-dimensional spreads of the pollutant, are then compared to wind-tunnel (WT) measurements. The accuracy and computational cost of both numerical approaches are evaluated. The time-evolution of the pollutant concentration (for LES only) and the mean (time-averaged) values are presented. It is observed that amongst the two RANS models, RSM performed better than standard k-epsilon except at the centerline of the canyon walls. However, LES, although computationally more expensive, did better than RANS in predicting the concentration distribution because it was able to capture the unsteady and intermittent fluctuations of the flow field, and hence resolve the transient mixing process within the street canyon. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据