4.3 Article

Applying Multiobjective Genetic Algorithm to Analyze the Conflict among Different Water Use Sectors during Drought Period

期刊

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)WR.1943-5452.0000069

关键词

Trade-off curve; Stepwise optimal water allocation (SOWA) model; Convex hull multiobjective genetic algorithm (cMOGA)

向作者/读者索取更多资源

Water deficits often occur during the drought season and may cause water conflicts among various water use sectors. The reservoir rule curve operation is commonly used to avoid extreme water shortage during droughts in Taiwan. When applying the rule curve operation, the water supply discounting ratio for different sectors implies a trade-off of water deficit impact among sectors. This study therefore develops a multiobjective water resource management model to evaluate the trade-off curve of water deficit impact between irrigation and public sectors to facilitate negotiation between the sectors for obtaining acceptable discounting ratios. The study uses the shortage index to assess water deficit impact. The proposed model integrates operating rules, the stepwise optimal water allocation model, and the convex hull multiobjective genetic algorithm to solve the multiobjective regional water allocation planning problem. The computed trade-off curve, noninferior solutions, provides relevant information to facilitate negotiating water-demand transfer. The results reveal that when decision makers prefer specified water use, the discounting ratio of another competing water use at the low buffer zone should be limited on the lower bound.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据