4.3 Article Proceedings Paper

Insights into extensional processes during magma assisted rifting: Evidence from aligned scoria cones

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jvolgeores.2010.07.019

关键词

East African Rift; Ethiopia; volcanism; extension; geochemistry; rifted margin

资金

  1. Natural Environment Research Council [NE/E013945/1] Funding Source: researchfish
  2. NERC [NE/E013945/1] Funding Source: UKRI

向作者/读者索取更多资源

Mechanical and magmatic processes exert first-order control on the architecture and evolution of rifts. As a continental rift develops towards a new oceanic spreading centre, extension that is initially accommodated in a broad zone of faulting and ductile stretching must transition towards a narrow zone of focused magmatic intrusion. The Main Ethiopian Rift (MER), part of the East African Rift System, is an ideal location to study this transition because it captures rifting processes during continental breakup. In this contribution we synthesise geochemical data from scoria cones in the Wonji Fault Belt (WFB) and Silti-Debre Zeyit Fault Zone (SDFZ) in the MER to provide new constraints on the development of mantle melting columns and magmatic plumbing systems since the onset of rifting. We utilize the extensive geophysical and geochemical databases, collected in the Ethiopian Rift, to show that geochemical evidence of heterogeneity in the depth of the mantle melting column which produced Quaternary rift basalts correlates with lithospheric structure. When combined with existing observations of asymmetry across the rift in terms of depth of melting column and magmatic plumbing systems, it is evident that the mechanical structure of the rift, defined during the initial stages of breakup, has played a dominant role in the initial development of magma assisted rifting in the MER. Surface structures and crustal-scale geophysical studies have suggested the WFB is analogous to a sea-floor spreading centre. However, the geochemical characteristics of rift basalts are consistent with mantle tomography that shows no evidence beneath the MER for passive magmatic upwelling beneath discrete rift segments as is observed in the ocean basins. Collectively, the Ethiopian data show that the distribution of mantle melts during the initiation of magma assisted rifting is fundamentally influenced by lithospheric structures formed during earlier syn-rift stretching. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据