4.2 Article

Visualization of respiratory flows from 3D reconstructed alveolar airspaces using X-ray tomographic microscopy

期刊

JOURNAL OF VISUALIZATION
卷 13, 期 4, 页码 337-345

出版社

SPRINGER
DOI: 10.1007/s12650-010-0043-0

关键词

Synchrotron radiation X-ray tomographic microscopy (SRXTM); Computational fluid dynamics (CFD); Pulmonary acinus; Alveolar flow

向作者/读者索取更多资源

A deeper knowledge of the three-dimensional (3D) structure of the pulmonary acinus has direct applications in studies on acinar fluid dynamics and aerosol kinematics. To date, however, acinar flow simulations have been often based on geometrical models inspired by morphometrical studies; limitations in the spatial resolution of lung imaging techniques have prevented the simulation of acinar flows using 3D reconstructions of such small structures. In the present study, we use high-resolution, synchrotron radiation-based X-ray tomographic microscopy (SRXTM) images of the pulmonary acinus of a mouse to reconstruct 3D alveolar airspaces and conduct computational fluid dynamic (CFD) simulations mimicking rhythmic breathing motion. Respiratory airflows and Lagrangian (massless) particle tracking are visualized in two examples of acinar geometries with varying size and complexity, representative of terminal sacculi including their alveoli. The present CFD simulations open the path towards future acinar flow and aerosol deposition studies in complete and anatomically realistic multi-generation acinar trees using reconstructed 3D SRXTM geometries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据