4.5 Review

Water's phase diagram: From the notion of thermodynamics to hydrogen-bond cooperativity

期刊

PROGRESS IN SOLID STATE CHEMISTRY
卷 43, 期 3, 页码 71-81

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.progsolidstchem.2015.03.001

关键词

Water; Ice; Hydrogen bond; Phase diagram; Pressure; Temperature

资金

  1. NSF China [21273191, 91227202]

向作者/读者索取更多资源

This presentation features recent progress in understanding the phase diagram of water and ice from the perspective of hydrogen bond (O:H-O) cooperative relaxation with focus on how the segmental length and the containing angle of the O:H-O bond change with mechanical compression and thermal excitation. By interplaying theoretical predictions, numerical computations, and phonon spectrometrics, we firstly examined the relaxation dynamics of O:H-O bond segmental length and phonon stiffness of: i) liquid water at 300 K and ice at 80 K as a function of pressure, ii) liquid water cooling from 350 K to 80K under the ambient pressure, iii) mechanical freezing of the ambient water under compression up to 1.83 GPa, and, iv) liquid water heating from 253 to 753 K under 30 MPa pressure. Observations allow us to classify the T-c(P) phase boundaries of water and ice into four types according to their slopes and then formulate them in terms of hydrogen bond relaxation in segmental length and containing angle. Observations reinforce the essentiality and effectiveness of hydrogen bond notion in dictating the unusual behavior of water and ice and clarify the bonding dynamics during phase transition, which is beyond the scope of classical thermodynamics. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据