4.3 Article

Adaptive pooling of visual motion signals by the human visual system revealed with a novel multi-element stimulus

期刊

JOURNAL OF VISION
卷 9, 期 3, 页码 -

出版社

ASSOC RESEARCH VISION OPHTHALMOLOGY INC
DOI: 10.1167/9.3.4

关键词

motion integration; global motion; plaid motion; aperture problem; Gabor

向作者/读者索取更多资源

The two-dimensional (2D) trajectory of visual motion is usually not directly available to the visual system. Local one-dimensional (1D) sensors initiate processing but can only restrict the solution to a set of speed and direction combinations consistent with the 2D trajectory. These 1D signals are then integrated across orientation and space to compute 2D signals. Both motion integrations are thought to occur in higher cortical areas, but it remains unclear whether 1D signals are integrated over orientation and space simultaneously (1D pooling process), or instead are integrated locally with the resulting 2D signals then spatially integrated (2D pooling process). From psychophysical responses to novel global-motion stimuli comprised of numerous Gabor (1D) or Plaid (2D) elements, here we show that the human visual system adaptively switches between 1D pooling and 2D pooling depending on the input. When local 2D signals cannot be determined, the visual system shows effective 1D pooling that approximately follows the intersection of constraints rule. On the other hand, when local 2D signals are available, the visual system shows 2D pooling that approximately follows the vector average rule. Spatial motion integration therefore exhibits great. exibility when estimating complex optic flows in natural scenes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据