4.6 Article

Galectin-1 Binds to Influenza Virus and Ameliorates Influenza Virus Pathogenesis

期刊

JOURNAL OF VIROLOGY
卷 85, 期 19, 页码 10010-10020

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.00301-11

关键词

-

类别

资金

  1. National Institutes of Health
  2. National Institute of General Medical Sciences [GM62116]
  3. National Science Council, Taiwan [NSC 99-2120-M-006-007, NSC 99-2321-B-006-009]
  4. Center for Frontier Materials and Micro/Nano Science and Technology, National Cheng Kung University, Taiwan

向作者/读者索取更多资源

Innate immune response is important for viral clearance during influenza virus infection. Galectin-1, which belongs to S-type lectins, contains a conserved carbohydrate recognition domain that recognizes galactose-containing oligosaccharides. Since the envelope proteins of influenza virus are highly glycosylated, we studied the role of galectin-1 in influenza virus infection in vitro and in mice. We found that galectin-1 was upregulated in the lungs of mice during influenza virus infection. There was a positive correlation between galectin-1 levels and viral loads during the acute phase of viral infection. Cells treated with recombinant human galectin-1 generated lower viral yields after influenza virus infection. Galectin-1 could directly bind to the envelope glycoproteins of influenza A/WSN/33 virus and inhibit its hemagglutination activity and infectivity. It also bound to different subtypes of influenza A virus with micromolar dissociation constant (K-d) values and protected cells against influenza virus-induced cell death. We used nanoparticle, surface plasmon resonance analysis and transmission electron microscopy to further demonstrate the direct binding of galectin-1 to influenza virus. More importantly, we show for the first time that intranasal treatment of galectin-1 could enhance survival of mice against lethal challenge with influenza virus by reducing viral load, inflammation, and apoptosis in the lung. Furthermore, galectin-1 knockout mice were more susceptible to influenza virus infection than wild-type mice. Collectively, our results indicate that galectin-1 has anti-influenza virus activity by binding to viral surface and inhibiting its infectivity. Thus, galectin-1 may be further explored as a novel therapeutic agent for influenza.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据