4.6 Article

5-Azacytidine Can Induce Lethal Mutagenesis in Human Immunodeficiency Virus Type 1

期刊

JOURNAL OF VIROLOGY
卷 83, 期 22, 页码 11950-11958

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.01406-09

关键词

-

类别

资金

  1. NIH [GM56615, T32DA007097, T32 CA009138]
  2. Academic Health Center Faculty Development Grant
  3. Center for Drug Design

向作者/读者索取更多资源

Ribonucleosides inhibit human immunodeficiency virus type 1 (HIV-1) replication by mechanisms that have not been fully elucidated. Here, we report the antiviral mechanism for the ribonucleoside analog 5-azacytidine (5-AZC). We hypothesized that the anti-HIV-1 activity of 5-AZC was due to an increase in the HIV-1 mutation rate following its incorporation into viral RNA during transcription. However, we demonstrate that 5-AZC's primary antiviral activity can be attributed to its effect on the early phase of HIV-1 replication. Furthermore, the antiviral activity was associated with an increase in the frequency of viral mutants, suggesting that 5-AZC's primary target is reverse transcription. Sequencing analysis showed an enrichment in G-to-C transversion mutations and further supports the idea that reverse transcription is an antiviral target of 5-AZC. These results indicate that 5-AZC is incorporated into viral DNA following reduction to 5-aza-2'-deoxycytidine. Incorporation into the viral DNA leads to an increase in mutant frequency that is consistent with lethal mutagenesis during reverse transcription as the primary antiviral mechanism of 5-AZC. Antiviral activity and increased mutation frequency were also associated with the late phase of HIV-1 replication; however, 5-AZC's effect on the late phase was less robust. These results reveal that the primary antiviral mechanism of 5-AZC can be attributed to its ability to increase the HIV-1 mutation frequency through viral-DNA incorporation during reverse transcription. Our observations indicate that 5-AZC can affect two steps in HIV-1 replication (i.e., transcription and reverse transcription) but that its primary antiviral activity is due to incorporation during reverse transcription.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据