4.6 Article

Identification of a coronavirus transcription enhancer

期刊

JOURNAL OF VIROLOGY
卷 82, 期 8, 页码 3882-3893

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.02622-07

关键词

-

类别

向作者/读者索取更多资源

Coronavirus (CoV) transcription includes a discontinuous mechanism during the synthesis of subgenome-length minus-strand RNAs leading to a collection of mRNAs in which the 5' terminal leader sequence is fused to contiguous genome sequences. It has been previously shown that transcription-regulating sequences (TRSs) preceding each gene regulate transcription. Base pairing between the leader TRS (TRS-L) and the complement of the body TRS (cTRS-B) in the nascent RNA is a determinant factor during CoV transcription. In fact, in transmissible gastroenteritis CoV, a good correlation has been observed between subgenomic mRNA (sg mRNA) levels and the free energy (Delta G) of TRS-L and cTRS-B duplex formation. The only exception was sg mRNA N, the most abundant sg mRNA during viral infection in spite of its minimum Delta G associated with duplex formation. We postulated that additional factors should regulate transcription of sg mRNA N. In this report, we have described a novel transcription regulation mechanism operating in CoV by which a 9-nucleotide (nt) sequence located 449 nt upstream of the N gene TRS core sequence (CS-N) interacts with a complementary sequence just upstream of CS-N, specifically increasing the accumulation of sg mRNA N. Alteration of this complementarity in mutant replicon genomes showed a correlation between the predicted stability of the base pairing between 9-nt sequences and the accumulation of sg mRNA N. This interaction is exclusively conserved in group la CoVs, the only CoV subgroup in which the N gene is not the most 3' gene in the viral genome. This is the first time that a long-distance RNA-RNA interaction regulating transcriptional activity specifically enhancing the transcription of one gene has been described to occur in CoVs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据