4.1 Article

The Mode of Biofilm Formation on Smooth Surfaces by Campylobacter jejuni

期刊

JOURNAL OF VETERINARY MEDICAL SCIENCE
卷 72, 期 4, 页码 411-416

出版社

JAPAN SOC VET SCI
DOI: 10.1292/jvms.09-0339

关键词

C. jejuni; flagellar; motility

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan
  2. University of Miyazaki

向作者/读者索取更多资源

Many microorganisms produce extracellular polymers referred to collectively as slime or glycocalyx. and form biofilms on solid surfaces in natural ecosystems. Campylobacter jejuni, one of the most important foodborne pathogens. also has the ability to form biofilm on stainless steel, glass, or polyvinyl chloride in vitro. However, the issue of biofilm formation by Campylobacter species has not been extensively examined. The present study was performed to examine the mode of adhesion of C. jejuni to a smooth surface. When bacterial suspensions in Brucella broth were incubated in microplate wells with a glass coverslip, microcolonies 0.5-2 mm in diameter were formed on the coverslip within 2 hr from the start of incubation. These microcolonies gradually grew and formed a biofilm of net-like connections within 6 hr. Transmission electron microscopy indicated that massive amounts of extracellular material masked the cell surface. and this material bound ruthenium red, suggesting the presence of a polysaccharide moiety. Scanning electron microscopy indicated that the flagella acted as bridges, forming net-like connections between the organisms. To determine the genes associated with biofilm formation, aflagellate (flaA) and flagellate but non-motile (motA) mutants were constructed from strain 81-176 by natural transformation-mediated allelic exchange. The flaA(-) and motA(-) mutants did not form the biofilm exhibited by the wild-type strain. These findings suggest that flagella-mediated motility as well as flagella is required for biofilm formation in vitro.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据