4.7 Article

Hummingbird tongues are elastic micropumps

出版社

ROYAL SOC
DOI: 10.1098/rspb.2015.1014

关键词

capillarity; feeding mechanism; fluid dynamics; hummingbird foraging

资金

  1. UConn EEB Department
  2. CESE
  3. American Ornithologists' Union
  4. Sigma-Xi
  5. NSF IOS- DDIG [1311413]
  6. NSF [CMMI-0952646]
  7. Directorate For Engineering
  8. Div Of Civil, Mechanical, & Manufact Inn [0952646] Funding Source: National Science Foundation

向作者/读者索取更多资源

Pumping is a vital natural process, imitated by humans for thousands of years. We demonstrate that a hitherto undocumented mechanism of fluid transport pumps nectar onto the hummingbird tongue. Using high-speed cameras, we filmed the tongue fluid interaction in 11 hummingbird species, from seven of the rune main hummingbird clades. During the offloading of the nectar inside the bill, hummingbirds compress their tongues upon extrusion; the compressed tongue remains flattened until it contacts the nectar. After contact with the nectar surface, the tongue reshapes filling entirely with nectar; we did not observe the formation of menisci required for the operation of capillarity during this process. We show that the tongue works as an elastic micropump; fluid at the tip is driven into the tongue's grooves by forces resulting from re-expansion of a collapsed section. This work falsifies the long-standing idea that capillarity is an important force filling hummingbird tongue grooves during nectar feeding. The expansive filling mechanism we report in this paper recruits elastic recovery properties of the groove walls to load nectar into the tongue an order of magnitude faster than capillarity could. Such fast filling allows hummingbirds to extract nectar at higher rates than predicted by capillarity-based foraging models, in agreement with their fast licking rates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据