4.8 Article

Programmable motion of DNA origami mechanisms

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1408869112

关键词

DNA nanotechnology; DNA origami; dynamic structures; machine design; self-assembly

资金

  1. National Science Foundation (NSF) [CMMI-1235060]
  2. Center for Emergent Materials at The Ohio State University, an NSF Materials Research Science and Engineering Center [DMR-0820414]
  3. Div Of Civil, Mechanical, & Manufact Inn
  4. Directorate For Engineering [1235060] Funding Source: National Science Foundation

向作者/读者索取更多资源

DNA origami enables the precise fabrication of nanoscale geometries. We demonstrate an approach to engineer complex and reversible motion of nanoscale DNA origami machine elements. We first design, fabricate, and characterize the mechanical behavior of flexible DNA origami rotational and linear joints that integrate stiff double-stranded DNA components and flexible single-stranded DNA components to constrain motion along a single degree of freedom and demonstrate the ability to tune the flexibility and range of motion. Multiple joints with simple 1D motion were then integrated into higher order mechanisms. One mechanism is a crank-slider that couples rotational and linear motion, and the other is a Bennett linkage that moves between a compacted bundle and an expanded frame configuration with a constrained 3D motion path. Finally, we demonstrate distributed actuation of the linkage using DNA input strands to achieve reversible conformational changes of the entire structure on similar to minute timescales. Our results demonstrate programmable motion of 2D and 3D DNA origami mechanisms constructed following a macroscopic machine design approach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据