4.8 Article

Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO2 could leak

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1413284112

关键词

carbon sequestration; induced seismicity; overpressure; climate change; CO2 leakage

资金

  1. Fossil Energy, Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory under US Department of Energy [DE-AC02-05CH11231]
  2. European Community [309607, 282900]

向作者/读者索取更多资源

Zoback and Gorelick [(2012) Proc Natl Acad Sci USA 109(26): 10164-10168] have claimed that geologic carbon storage in deep saline formations is very likely to trigger large induced seismicity, which may damage the caprock and ruin the objective of keeping CO2 stored deep underground. We argue that felt induced earthquakes due to geologic CO2 storage are unlikely because (i) sedimentary formations, which are softer than the crystalline basement, are rarely critically stressed; (ii) the least stable situation occurs at the beginning of injection, which makes it easy to control; (iii) CO2 dissolution into brine may help in reducing overpressure; and (iv) CO2 will not flow across the caprock because of capillarity, but brine will, which will reduce overpressure further. The latter two mechanisms ensure that overpressures caused by CO2 injection will dissipate in a moderate time after injection stops, hindering the occurrence of postinjection induced seismicity. Furthermore, even if microseismicity were induced, CO2 leakage through fault reactivation would be unlikely because the high clay content of caprocks ensures a reduced permeability and increased entry pressure along the localized deformation zone. For these reasons, we contend that properly sited and managed geologic carbon storage in deep saline formations remains a safe option to mitigate anthropogenic climate change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据