4.8 Article

Network compensation of cyclic GMP-dependent protein kinase II knockout in the hippocampus by Ca2+-permeable AMPA receptors

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1417498112

关键词

LTP; Ca2+-permeable AMPA receptors; gene knockout; calcineurin

资金

  1. Blas Frangione postdoctoral fellowship
  2. NIH [5T32GM07308, 5R01MH067229]

向作者/读者索取更多资源

Gene knockout (KO) does not always result in phenotypic changes, possibly due to mechanisms of functional compensation. We have studied mice lacking cGMP-dependent kinase II (cGKII), which phosphorylates GluA1, a subunit of AMPA receptors (AMPARs), and promotes hippocampal long-term potentiation (LTP) through AMPAR trafficking. Acute cGKII inhibition significantly reduces LTP, whereas cGKII KO mice show no LTP impairment. Significantly, the closely related kinase, cGKI, does not compensate for cGKII KO. Here, we describe a previously unidentified pathway in the KO hippocampus that provides functional compensation for the LTP impairment observed when cGKII is acutely inhibited. We found that in cultured cGKII KO hippocampal neurons, cGKII-dependent phosphorylation of inositol 1,4,5-trisphosphate receptors was decreased, reducing cytoplasmic Ca2+ signals. This led to a reduction of calcineurin activity, thereby stabilizing GluA1 phosphorylation and promoting synaptic expression of Ca2+-permeable AMPARs, which in turn induced a previously unidentified form of LTP as a compensatory response in the KO hippocampus. Calcineurin-dependent Ca2+-permeable AMPAR expression observed here is also used during activity-dependent homeostatic synaptic plasticity. Thus, a homeostatic mechanism used during activity reduction provides functional compensation for gene KO in the cGKII KO hippocampus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据