4.8 Article

Climate change and physical disturbance cause similar community shifts in biological soil crusts

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1509150112

关键词

alternate states; biocrusts; community structure; secondary succession; warming

资金

  1. US Department of Energy Office of Science, Office of Biological and Environmental Research Terrestrial Ecosystem Sciences Program [DE-SC-0008168]
  2. USGS Climate and Land Use, and Ecosystems programs

向作者/读者索取更多资源

Biological soil crusts (biocrusts)-communities of mosses, lichens, cyanobacteria, and heterotrophs living at the soil surface-are fundamental components of drylands worldwide, and destruction of biocrusts dramatically alters biogeochemical processes, hydrology, surface energy balance, and vegetation cover. Although there has been long-standing concern over impacts of physical disturbances on biocrusts (e.g., trampling by livestock, damage from vehicles), there is increasing concern over the potential for climate change to alter biocrust community structure. Using long-term data from the Colorado Plateau, we examined the effects of 10 y of experimental warming and altered precipitation (in full-factorial design) on biocrust communities and compared the effects of altered climate with those of long-term physical disturbance (> 10 y of replicated human trampling). Surprisingly, altered climate and physical disturbance treatments had similar effects on biocrust community structure. Warming, altered precipitation frequency [an increase of small (1.2 mm) summer rainfall events], and physical disturbance from trampling all promoted early successional community states marked by dramatic declines in moss cover and increases in cyanobacteria cover, with more variable effects on lichens. Although the pace of community change varied significantly among treatments, our results suggest that multiple aspects of climate change will affect biocrusts to the same degree as physical disturbance. This is particularly disconcerting in the context of warming, as temperatures for drylands are projected to increase beyond those imposed as treatments in our study.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据