4.8 Article

Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1512465112

关键词

protein delivery; immune response; zwitterionic polymer; hydrogel; nanomedicine

资金

  1. Defense Threat Reduction Agency [HDTRA1-13-1-0044]
  2. National Institutes of Health [1R21EB020781-01]

向作者/读者索取更多资源

Advances in protein therapy are hindered by the poor stability, inadequate pharmacokinetic (PK) profiles, and immunogenicity of many therapeutic proteins. Polyethylene glycol conjugation (PEGylation) is the most successful strategy to date to overcome these shortcomings, and more than 10 PEGylated proteins have been brought to market. However, anti-PEG antibodies induced by treatment raise serious concerns about the future of PEGylated therapeutics. Here, we demonstrate a zwitterionic polymer network encapsulation technology that effectively enhances protein stability and PK while mitigating the immune response. Uricase modified with a comprehensive zwitterionic polycarboxybetaine (PCB) network exhibited exceptional stability and a greatly prolonged circulation half-life. More importantly, the PK behavior was unchanged, and neither anti-uricase nor anti-PCB antibodies were detected after three weekly injections in a rat model. This technology is applicable to a variety of proteins and unlocks the possibility of adopting highly immunogenic proteins for therapeutic or protective applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据