4.8 Article

Classification of charge density waves based on their nature

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1424791112

关键词

charge density wave; phonon; nesting

资金

  1. 973 Project [2012CB921700]
  2. Natural Science Foundation of China [11225422, 11304367]
  3. External Cooperation Program of the Bureau of International Cooperation, Chinese Academy of Sciences [112111KYSB20130007]

向作者/读者索取更多资源

The concept of a charge density wave (CDW) permeates much of condensed matter physics and chemistry. CDWs have their origin rooted in the instability of a one-dimensional system described by Peierls. The extension of this concept to reduced dimensional systems has led to the concept of Fermi surface nesting (FSN), which dictates the wave vector ((q) over right arrow (CDW)) of the CDW and the corresponding lattice distortion. The idea is that segments of the Fermi contours are connected by (q) over right arrow (CDW), resulting in the effective screening of phonons inducing Kohn anomalies in their dispersion at (q) over right arrow (CDW), driving a lattice restructuring at low temperatures. There is growing theoretical and experimental evidence that this picture fails in many real systems and in fact it is the momentum dependence of the electron-phonon coupling (EPC) matrix element that determines the characteristic of the CDW phase. Based on the published results for the prototypical CDW system 2H-NbSe2, we show how well the (q) over right arrow -dependent EPC matrix element, but not the FSN, can describe the origin of the CDW. We further demonstrate a procedure of combing electronic band and phonon measurements to extract the EPC matrix element, allowing the electronic states involved in the EPC to be identified. Thus, we show that a large EPC does not necessarily induce the CDW phase, with Bi2Sr2CaCu2O8+delta as the example, and the charge-ordered phenomena observed in various cuprates are not driven by FSN or EPC. To experimentally resolve the microscopic picture of EPC will lead to a fundamental change in the way we think about, write about, and classify charge density waves.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据