4.6 Article

Theory of resonant tunneling in bilayer-graphene/hexagonal-boron-nitride heterostructures

期刊

APPLIED PHYSICS LETTERS
卷 106, 期 9, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4914324

关键词

-

资金

  1. Center for Low Energy Systems Technology (LEAST) one of six centers of STARnet, a Semiconductor Research Corporation program by MARCO
  2. DARPA

向作者/读者索取更多资源

A theory is developed for calculating vertical tunneling current between two sheets of bilayer graphene separated by a thin, insulating layer of hexagonal boron nitride, neglecting many-body effects. Results are presented using physical parameters that enable comparison of the theory with recently reported experimental results. Observed resonant tunneling and negative differential resistance in the current-voltage characteristics are explained in terms of the electrostatically-induced band gap, gate voltage modulation, density of states near the band edge, and resonances with the upper sub-band. These observations are compared to ones from similar heterostructures formed with monolayer graphene. (C) 2015 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据