4.6 Article

Correlation of interface states/border traps and threshold voltage shift on AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors

期刊

APPLIED PHYSICS LETTERS
卷 107, 期 9, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4930076

关键词

-

向作者/读者索取更多资源

In this paper, three electrical techniques (frequency dependent conductance analysis, AC transconductance (AC-g(m)), and positive gate bias stress) were used to evaluate three different gate dielectrics (Plasma-Enhanced Atomic Layer Deposition Si3N4, Rapid Thermal Chemical Vapor Deposition Si3N4, and Atomic Layer Deposition (ALD) Al2O3) for AlGaN/GaN Metal-Insulator-Semiconductor High-Electron-Mobility Transistors. From these measurements, the interface state density (D-it), the amount of border traps, and the threshold voltage (V-TH) shift during a positive gate bias stress can be obtained. The results show that the V-TH shift during a positive gate bias stress is highly correlated to not only interface states but also border traps in the dielectric. A physical model is proposed describing that electrons can be trapped by both interface states and border traps. Therefore, in order to minimize the V-TH shift during a positive gate bias stress, the gate dielectric needs to have a lower interface state density and less border traps. However, the results also show that the commonly used frequency dependent conductance analysis technique to extract D-it needs to be cautiously used since the resulting value might be influenced by the border traps and, vice versa, i.e., the g(m) dispersion commonly attributed to border traps might be influenced by interface states. (C) 2015 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据