4.4 Article

A New Asperity-Scale Mechanistic Model of Tribocorrosive Wear: Synergistic Effects of Mechanical Wear and Corrosion

期刊

出版社

ASME
DOI: 10.1115/1.4041246

关键词

tribocorrosion; wear modeling; electrochemistry; surface roughness; wear synergism

向作者/读者索取更多资源

A corrosive wear model is considered at the asperity-scale of a tribocorrosive wear system as well as the traditional Archard-type mechanical wear model. The geometry of the surface asperities is modified in a contact mechanics model with respect to both corrosive and mechanical wear calculations. This model was presented and validated for prediction of the electrochemistry in the first part of this work. The material used in the experimental part of this work was CoCrMo plate working electrode (WE) and Si3N4 ball as the counter body in a reciprocating configuration. Experiments were conducted at loads of 5, 7.5, and 10 N and the contributions of total mechanical wear and corrosion were measured. The model is then tuned to predict the chemical and mechanical components of the total wear of the system. The synergistic effect of corrosion on mechanical wear and mechanical wear on corrosion are modeled numerically in this work. The values are then used to explain different components of mechanistic tribocorrosive wear models present in the literature. This deterministic model, for the first time, calculates the corrosion-enhanced wear in a tribocorrosive wear environment and proposes that changes in the topography are responsible for this synergistic effect. The results show a linear dependence of the corrosion enhanced wear, wear-enhanced corrosion, and the pure mechanical wear on the applied load. Results also suggest that the wear enhanced corrosion has a significant contribution in the overall degradation of the material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据