4.4 Article

A Dynamic Model for Vibration Studies of Deep Groove Ball Bearings Considering Single and Multiple Defects in Races

期刊

出版社

ASME
DOI: 10.1115/1.4002333

关键词

vibration; multiple defects; time domain; frequency domain; deep groove ball bearing

向作者/读者索取更多资源

A dynamic model is reported herein for the study of vibrations of deep groove ball bearings having single and multiple defects on surfaces of inner and outer races. Masses of shaft, housing, races, and balls are considered in the modeling. The coupled solution of governing equations of motions is obtained using Runge-Kutta method. The model provides the vibrations of shaft, balls, and housing in time and frequency domains. Computed results from the model are validated with experimental results, which are generated using healthy and defective deep groove ball bearings. Characteristic defect frequencies and its harmonics are broadly investigated using both theoretical and experimental results. Comparison of vibration spectra for the cases having single and two defects on races reveals relatively higher velocity amplitudes with two defects. Good correlations between theoretical and experimental results are observed. Authors believe that this dynamic model can be used with confidence for the study and prediction of vibrations of healthy and defective deep groove ball bearings. [DOI: 10.1115/1.4002333]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据