4.5 Review

Microcystin Dynamics in Aquatic Organisms

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/10937400802545151

关键词

-

资金

  1. Portuguese Foundation for Science and Technology (FCT) [SFRH/BD/31416/2006]

向作者/读者索取更多资源

Eutrophication of surface water has increased significantly during the past decade, resulting in increased occurrences of toxic blooms. Cyanotoxins have become a global health threat to humans, wild animals, or domestic livestock. Hepatotoxic microcystins (MC) are the predominant cyanotoxins, which accumulate in aquatic organisms and are transferred to higher trophic levels. This is an issue of major concern in aquatic toxicology, as it involves the risk for human exposure through the consumption of contaminated fish and other aquatic organisms. The persistence and detoxification of MC in aquatic organisms are important issues for public health and fishery economics. Bioaccumulation of MC depends on the toxicity of the strains, mode of feeding, and detoxication mechanisms. Although mussels, as sessile filter feeders, seem to be organisms that ingest more MC, other molluscs like gastropods, as well as zooplankton and fish, may also retain average similar levels of toxins. Edible animals such as some species of molluscs, crustaceans, and fish present different risk because toxins accumulate in muscle at low levels. Carnivorous fish seem to accumulate high MC concentrations compared to phytophagous or omnivorous fish. This review summarizes the existing data on the distribution and dynamics of MC in contaminated aquatic organisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据