4.5 Article

High-resolution X-ray microtomography for three-dimensional imaging of cardiac progenitor cell homing in infarcted rat hearts

期刊

出版社

WILEY-BLACKWELL
DOI: 10.1002/term.409

关键词

synchrotron radiation; microCT; infarcted rat heart; cell engraftment; cardiac progenitor cells; cell migration; nanoparticles; tissue engineering

资金

  1. Italian Ministry of University [PRIN AL2YNC 2007]
  2. European Project, FP7-BIOSCENT [NMP-214539 2007]
  3. Italian Ministry of Health [THEAPPL 2008]

向作者/读者索取更多资源

The recent introduction of stem cells in cardiology provides new tools in understanding the regenerative processes of the normal and pathological heart and has opened a search for new therapeutic strategies. Recent published reports have contributed to identifying possible cellular therapy approaches to generate new myocardium, involving transcoronary and intramyocardial injection of progenitor cells. However, one of the limiting factors in the overall interpretation of clinical results obtained by cell therapy is represented by the lack of three-dimensional (3D) high-resolution methods for the visualization of the injected cells and their fate within the myocardium. This work shows that X-ray computed microtomography may offer the unique possibility of detecting, with high definition and resolution and in ex vivo conditions, the 3D spatial distribution of rat cardiac progenitor cells, labelled with iron oxide nanoparticles, inside the infarcted rat heart early after injection. The obtained 3D images represent a very innovative progress as compared to experimental two-dimensional (2D) histological analysis, which requires time-consuming energies for image reconstruction in order to provide the overall distribution of rat clonogenic cells within the heart. Through microtomography, we were able to observe in 3D the presence of these cells within damaged cardiac tissue, with important structural details that are difficult to visualize by conventional bidimensional imaging techniques. This new 3D-imaging approach appears to be an important way to investigate the cellular events involved in cardiac regeneration and represents a promising tool for future clinical applications. Copyright (C) 2011 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据