4.5 Article

A versatile 3D culture model facilitates monitoring of astrocytes undergoing reactive gliosis

出版社

WILEY
DOI: 10.1002/term.209

关键词

CNS injury; glial scar; 3D culture model; GFAP; CSPG; vimentin; aquaporin 4; TGF beta 1

资金

  1. Wellcome Trust [080309/Z/06/Z]
  2. Wellcome Trust [080309/Z/06/Z] Funding Source: Wellcome Trust
  3. MRC [G113/31] Funding Source: UKRI
  4. Medical Research Council [G113/31] Funding Source: researchfish

向作者/读者索取更多资源

A major impediment to CNS repair is the glial scar, which forms following damage and is composed mainly of ramified, 'reactive' astrocytes that inhibit neuronal regrowth. The transition of astrocytes into this reactive phenotype (reactive gliosis) is a potential therapeutic target, but glial scar formation has proved difficult to study in monolayer cultures because they induce constitutive astrocyte activation. Here we demonstrate a 3D collagen gel system in which primary rat astrocytes were maintained in a persistently less reactive state than comparable cells in monolayer, resembling their status in the undamaged CNS. Reactivity, proliferation and viability were monitored and quantified using confocal, fluorescence and time-lapse microscopy, 3D image analysis, RT-PCR and ELISA. To assess the potential of this system as a model of reactive gliosis, astrocytes in 3D were activated with TGF beta 1 to a ramified, reactive phenotype (elevated GFAP, Aquaporin 4, CSPG, Vimentin and IL-6 secretion). This provides a versatile system in which astrocytes can be maintained in a resting state, then be triggered to undergo reactive gliosis, enabling real-time monitoring and quantitative analysis throughout and providing a powerful new tool for research into CNS damage and repair. Copyright (C) 2009 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据