4.6 Article

Neutrophil extracellular traps promote deep vein thrombosis in mice

期刊

JOURNAL OF THROMBOSIS AND HAEMOSTASIS
卷 10, 期 1, 页码 136-144

出版社

WILEY
DOI: 10.1111/j.1538-7836.2011.04544.x

关键词

citrullination; deep vein thrombosis; histones; neutrophil extracellular traps; von Willebrand factor

资金

  1. National Heart, Lung, and Blood Institute of the National Institutes of Health [R01 HL041002, R01 HL095091, R01 HL102101]

向作者/读者索取更多资源

. Background: Upon activation, neutrophils can release nuclear material known as neutrophil extracellular traps (NETs), which were initially described as a part of antimicrobial defense. Extracellular chromatin was recently reported to be prothrombotic in vitro and to accumulate in plasma and thrombi of baboons with experimental deep vein thrombosis (DVT). Objective: To explore the source and role of extracellular chromatin in DVT. Methods: We used an established murine model of DVT induced by flow restriction (stenosis) in the inferior vena cava (IVC). Results: We demonstrate that the levels of extracellular DNA increase in plasma after 6 h IVC stenosis, compared with sham-operated mice. Immunohistochemical staining revealed the presence of Gr-1-positive neutrophils in both red (RBC-rich) and white (platelet-rich) parts of thrombi. Citrullinated histone H3 (CitH3), an element of NETs structure, was present only in the red part of thrombi and was frequently associated with the Gr-1 antigen. Immunofluorescent staining of thrombi showed proximity of extracellular CitH3 and von Willebrand factor (VWF), a platelet adhesion molecule crucial for thrombus development in this model. Infusion of Deoxyribonuclease 1 (DNase 1) protected mice from DVT after 6 h and also 48 h IVC stenosis. Infusion of an unfractionated mixture of calf thymus histones increased plasma VWF and promoted DVT early after stenosis application. Conclusions: Extracellular chromatin, likely originating from neutrophils, is a structural part of a venous thrombus and both the DNA scaffold and histones appear to contribute to the pathogenesis of DVT in mice. NETs may provide new targets for DVT drug development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据