4.5 Article

Machining chatter in continuous facing under a constant nominal cutting speed: Tool vibration with time-varying delay

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0954405415604093

关键词

Facing; chatter; delay

向作者/读者索取更多资源

This article studies regenerative chatter in single-point face-machining at nominally constant speed under continuous conditions. A temporal model for rotational speed was developed and experimentally verified. The resulting rotational time-delay was cast into the classical force feedback mechanism for chatter. A chatter model was formulated to allow slight spindle speed variation about the temporal model. The modified method of steps was then employed to solve the tool vibration in time-domain allowing one (single-degree-of-freedom) or two (2-degree-of-freedom model) vibrational modes. Exploratory facing experiments using a grooving tool were conducted on a nickel alloy workpiece. It was found that the tool was more susceptible to chatter at larger diameters. It appeared that the single-degree-of-freedom model captured the most relevant of the observed phenomena while cutting without spindle speed variation, however, neither the 1-degree-of-freedom nor the 2-degree-of-freedom models could effectively capture the experimentally observed chatter evolution characteristics while cutting with spindle speed variation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据