4.6 Article Proceedings Paper

Bioengineered human and allogeneic pulmonary valve conduits chronically implanted orthotopically in baboons: Hemodynamic performance and immunologic consequences

期刊

出版社

MOSBY-ELSEVIER
DOI: 10.1016/j.jtcvs.2012.06.024

关键词

-

资金

  1. National Institutes of Health, Southwest National Primate Research Center Base Grant [P51RR013986-11]

向作者/读者索取更多资源

Objective: This study assesses in a baboon model the hemodynamics and human leukocyte antigen immunogenicity of chronically implanted bioengineered (decellularized with collagen conditioning treatments) human and baboon heart valve scaffolds. Methods: Fourteen baboons underwent pulmonary valve replacement, 8 with decellularized and conditioned (bioengineered) pulmonary valves derived from allogeneic (N = 3) or xenogeneic (human) (N = 5) hearts; for comparison, 6 baboons received clinically relevant reference cryopreserved or porcine valved conduits. Panel-reactive serum antibodies (human leukocyte antigen class I and II), complement fixing antibodies (C1q binding), and C-reactive protein titers were measured serially until elective sacrifice at 10 or 26 weeks. Serial transesophageal echocardiograms measured valve function and geometry. Differences were analyzed with Kruskal-Wallis and Wilcoxon rank-sum tests. Results: All animals survived and thrived, exhibiting excellent immediate implanted valve function by transesophageal echocardiograms. Over time, reference valves developed a smaller effective orifice area index (median, 0.84 cm(2)/m(2); range, 1.22 cm(2)/m(2)), whereas all bioengineered valves remained normal (effective orifice area index median, 2.45 cm(2)/m(2); range, 1.35 cm(2)/m(2); P = .005). None of the bioengineered valves developed elevated peak transvalvular gradients: 5.5 (6.0) mm Hg versus 12.5 (23.0) mm Hg (P = .003). Cryopreserved valves provoked the most intense antibody responses. Two of 5 human bioengineered and 2 of 3 baboon bioengineered valves did not provoke any class I antibodies. Bioengineered human (but not baboon) scaffolds provoked class II antibodies. C1q(+) antibodies developed in 4 recipients. Conclusions: Valve dysfunction correlated with markers for more intense inflammatory provocation. The tested bioengineering methods reduced antigenicity of both human and baboon valves. Bioengineered replacement valves from both species were hemodynamically equivalent to native valves. (J Thorac Cardiovasc Surg 2013;145:1098-107)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据