4.7 Article

Physical-Layer Security in the Internet of Things: Sensing and Communication Confidentiality Under Resource Constraints

期刊

PROCEEDINGS OF THE IEEE
卷 103, 期 10, 页码 1747-1761

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JPROC.2015.2466548

关键词

Internet of Things (IoT); low complexity; physical-layer security; resource constraints; secure sensing

向作者/读者索取更多资源

The Internet of Things (IoT) will feature pervasive sensing and control capabilities via a massive deployment of machine-type communication (MTC) devices. The limited hardware, low-complexity, and severe energy constraints of MTC devices present unique communication and security challenges. As a result, robust physical-layer security methods that can supplement or even replace lightweight cryptographic protocols are appealing solutions. In this paper, we present an overview of low-complexity physical-layer security schemes that are suitable for the IoT. A local IoT deployment is modeled as a composition of multiple sensor and data subnetworks, with uplink communications from sensors to controllers, and downlink communications from controllers to actuators. The state of the art in physical-layer security for sensor networks is reviewed, followed by an overview of communication network security techniques. We then pinpoint the most energy-efficient and low-complexity security techniques that are best suited for IoT sensing applications. This is followed by a discussion of candidate low-complexity schemes for communication security, such as ON-OFF switching and space-time block codes. The paper concludes by discussing open research issues and avenues for further work, especially the need for a theoretically well-founded and holistic approach for incorporating complexity constraints in physical-layer security designs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据