4.7 Article

Brain-Computer Interface for Neurorehabilitation of Upper Limb After Stroke

期刊

PROCEEDINGS OF THE IEEE
卷 103, 期 6, 页码 944-953

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JPROC.2015.2415800

关键词

Brain-computer interface (BCI); motor imagery; robotic; stroke rehabilitation

资金

  1. Science and Engineering Research Council of the Agency for Science, Technology and Research (A*STAR)

向作者/读者索取更多资源

Current rehabilitation therapies for stroke rely on physical practice (PP) by the patients. Motor imagery (MI), the imagination of movements without physical action, presents an alternate neurorehabilitation for stroke patients without relying on residue movements. However, MI is an endogenous mental process that is not physically observable. Recently, advances in brain-computer interface (BCI) technology have enabled the objective detection of MI that spearheaded this alternate neurorehabilitation for stroke. In this review, we present two strategies of using BCI for neurorehabilitation after stroke: detecting MI to trigger a feedback, and detecting MI with a robot to provide concomitant MI and PP. We also present three randomized control trials that employed these two strategies for upper limb rehabilitation. A total of 125 chronic stroke patients were screened over six years. The BCI screening revealed that 103 (82%) patients can use electroencephalogram-based BCI, and 75 (60%) performed well with accuracies above 70%. A total of 67 patients were recruited to complete one of the three RCTs ranging from two to six weeks of which 26 patients, who underwent BCI neurorehabilitation that employed these two strategies, had significant motor improvement of 4.5 measured by Fugl-Meyer Motor Assessment of the upper extremity. Hence, the results demonstrate clinical efficacy of using BCI as an alternate neurorehabilitation for stroke.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据