4.3 Article

Aerothermodynamic Study of Ultrahigh-Temperature Ceramic Winglet for Atmospheric Reentry Test

期刊

JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER
卷 22, 期 4, 页码 669-676

出版社

AMER INST AERONAUT ASTRONAUT
DOI: 10.2514/1.33296

关键词

-

向作者/读者索取更多资源

This paper deals with the aerothermodynamic analysis of an advanced concept of hot structure to be investigated at atmospheric reentry conditions. The paper gives a general description of the hot structure architecture and performs an aerothermodynamic analysis to optimize the winglet configuration, based on an ultrahigh-temperature ceramics leading edge able to withstand very high temperatures. Three-dimensional fluid-dynamic computations are carried out to evaluate the aerothermal loads on the winglet. The physical model includes viscous effects, real gas properties, nonequilibrium chemical reactions and surface catalytic effects. The numerical model has been validated by experimental results of two- and three-dimensional hypersonic flowfields. A thermal model of the structure has been implemented to predict the temperature of the winglet during reentry. The results are discussed with reference to the effects of the thermal interaction with the capsule skin, the relevance of thermal conduction inside the structure, and the transient methodology. The effect of different assumptions on the ultrahigh-temperature ceramics catalytic properties is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据