4.6 Article

Quantitative infrared imaging of impinging turbulent buoyant diffusion flames

期刊

PROCEEDINGS OF THE COMBUSTION INSTITUTE
卷 35, 期 -, 页码 2647-2655

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.proci.2014.05.115

关键词

Turbulent buoyant flames; Impinging flames; Flame radiation; Fire Dynamics Simulator; Infrared imaging

向作者/读者索取更多资源

A buoyant fire impinging on a horizontal ceiling at a certain distance from the fuel source occurs in many practical fire scenarios. Motivated by this application, infrared radiation from buoyant diffusion flames with and without impingement on a flat plate is studied using a quantitative comparison of measured and simulated images. The measured quantitative images of the radiation intensity are acquired using a calibrated high speed camera. Simulated radiation intensities are rendered in the form of images and compared quantitatively with the measured images. The simulated radiation intensities are obtained using the radiative transfer equation with local absorption coefficients evaluated using a narrowband radiation model. The instantaneous local species concentrations, soot volume fractions, and temperatures necessary for these simulations are calculated using the Fire Dynamics Simulator (FDS) version 6. The measured images reveal that the characteristic necking and bulging (7 Hz +/- 1 Hz) of the free buoyant flame is suppressed to a large extent by impingement on the plate. The roll-up vortices in the impinging flame are much smaller than those in the free flame. The stagnation point boundary layer inferred from the computed images is thicker at some instances than that inferred from the measurements. Qualitative and quantitative comparisons between the measured and computed infrared images for both the free and the impinging fires reveal many similarities as well as differences useful for model evaluation. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据