4.7 Article Proceedings Paper

Synthesis, characterization, and thermal properties of new flavor compounds

期刊

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
卷 116, 期 2, 页码 727-736

出版社

SPRINGER
DOI: 10.1007/s10973-013-3541-1

关键词

Long chain esters; TG/FTIR/QMS coupled method; Thermal degradation

向作者/读者索取更多资源

Synthesis, characterization, and thermal properties of new, flavor, long chain esters were presented. The new compounds were obtained in the catalytic esterification process of a stoichiometric ratio of trans-3,7-dimethyl-2,6-octadien-1-ol, succinic anhydride, and aliphatic chain diol. As diols ethylene glycol, 1,4-buthylene glycol, 1,5-pentylene glycol, and 1,6-hexylene glycol were applied. The spectroscopic analyses completely confirmed that the applied synthesis conditions allowed obtaining the new compounds with high yield and purity. Their thermal properties were studied in inert and oxidative atmospheres. The esters were less thermally stable in inert (IDT 186-195 A degrees C) than in oxidative (IDT 210-228 A degrees C) atmosphere. Two, non-completely divided decomposition steps were visible during their pyrolysis. In contrast, the new, long chain compounds decompose in three major steps in air. The analyses of the volatile products emitted during their pyrolysis indicated on the asymmetrical disrupt of their bonds. The formation of acyclic and alicyclic monoterpene hydrocarbons, succinic anhydride, diols, alcohols, alkenes, and water was observed. It indicated mainly on the beta-elimination reactions during their pyrolysis. Also, beta-elimination reactions of esters are mainly expected in air. Initially, it resulted in the formation of acyclic and alicyclic monoterpene hydrocarbons, hydroxyl compounds (diols, alcohols), and its beta-elimination products: aldehydes, alkenes, and water. However, the presence of oxygen in the medium causes the partial decarboxylation and oxygenation of aldehydes and thus the formation of alkenes and carbon dioxide. In addition, the beginning of evaporation of succinic anhydride was detected at T (max1). At T (max2) the evaporation of succinic anhydride, their partial decarboxylation to CO2, the small amounts of diols, alcohols, and aldehyde fragments were indicated. Finally, succinic anhydride, water, and carbon dioxide were only observed during decomposition of studied esters in air.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据