4.7 Article

Thermal behaviour and kinetic study of some triazoles as potential anti-inflammatory agents

期刊

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
卷 114, 期 3, 页码 1295-1305

出版社

SPRINGER
DOI: 10.1007/s10973-013-3123-2

关键词

Triazole; Acetic acid derivative; Thermal analysis; Kinetic study; NPK

资金

  1. University of Medicine and Pharmacy 'Victor Babes' Timisoara [15250/19.12.2012]

向作者/读者索取更多资源

Thermogravimetric (TG), differential thermogravimetric analysis and differential scanning calorimetry had been used to characterize the thermal stability of four new heterocyclic compounds with triazolic structure. The four analysed compounds have similar thermal behaviours, namely the thermal mal curves of these new compounds show three thermal events. These compounds were thermally stable up to 110 A degrees C. Above this temperature, the evolution of hydrochloric acid took place as observed by EGA. Identification and the monitoring of gaseous species released during thermal decomposition of pure triazoles in air atmosphere have been carried out by coupled TG-FTIR. Between 110 and 220 A degrees C the main gaseous product is HCl which was identified on the basis of these FTIR spectra. Arguments for a rapid thermooxidation of the four molecules were brought by EGA by identifying the substances which arise from both the destruction of side chains and of triazolic ring. The kinetic analysis of the destruction process of triazolic structure was investigated using the TG data in air for the substance's decomposition in non-isothermal conditions. The isoconversional methods, Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa and Friedman, were applied to determine the activation energy from the analysis of four curves measured at different heating rates. In order to obtain realistic kinetic parameters, even if the decomposition process is a complex one, the non-parametric kinetics method was also used. A good agreement between the data obtained from the four applied methods was found.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据