4.7 Article

Reactive characterization of nanothermites

期刊

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
卷 111, 期 1, 页码 431-436

出版社

SPRINGER
DOI: 10.1007/s10973-012-2413-4

关键词

Nanothermites; Reactivity; TG; DSC; High-speed video

向作者/读者索取更多资源

Conventional thermal analysis techniques (TG and DSC) give valuable information on the activation energy and the reactivity of energetic materials such as organic explosives. Here, we discuss the use of these methods for characterizing nanothermites, energetic compositions made of metallic oxides and a fuel (often a reducing metal). The experimental limitations of these analysis techniques are identified. It is difficult to ignite nanothermites with slow heating rates as those used in DSC. This is due to the inorganic nature of the thermite components and because the reaction involves interparticular heat and matter transfers. In addition, during the progressive decomposition of nanothermites, there is no change in mass, so it cannot be observed by thermogravimetric analysis. The use of laser ignition to prime the abrupt combustion of nanothermite pellets allows determining the ignition energy and analyzing the propagation of the combustion front. It also provides qualitative data that can be used to understand the combustion mechanism and to correlate it to the microstructure of the nanothermites. By analyzing several examples, we will show that the coupling of high speed video to existing thermal analysis techniques could significantly extend their utilization range for the characterization of new energetic materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据