4.4 Article

Turing-Hopf patterns on growing domains: The torus and the sphere

期刊

JOURNAL OF THEORETICAL BIOLOGY
卷 481, 期 -, 页码 136-150

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2018.09.028

关键词

Pattern formation; Turing-Hopf bifurcation; Isotropically growing domains; Fitzhugh-Nagumo model

向作者/读者索取更多资源

This paper deals with the study of spatial and spatio-temporal patterns in the reaction-diffusion FitzHugh-Nagumo model on growing curved domains. This is carried out on two exemplar cases: a torus and a sphere. We compute bifurcation boundaries for the homogeneous steady state when the homogeneous system is monostable. We exhibit Turing and Turing-Hopf bifurcations, as well as additional patterning outside of these bifurcation regimes due to the multistability of patterned states. We consider static and growing domains, where the growth is slow, isotropic, and exponential in time, allowing for a simple analytical calculation of these bifurcations in terms of model parameters. Numerical simulations allow us to discuss the role played by the growth and the curvature of the domains on the pattern selection on the torus and the sphere. We demonstrate parameter regimes where the linear theory can successfully predict the kind of pattern (homogeneous and heterogeneous oscillations and stationary spatial patterns) but not their detailed nonlinear structure. We also find parameter regimes where the linear theory fails, such as Hopf regimes which give rise to spatial patterning (depending on geometric details), where we suspect that multistability plays a key role in the departure from homogeneity. Finally we also demonstrate effects due to the evolution of nonuniform patterns under growth, suggesting important roles for growth in reaction-diffusion systems beyond modifying instability regimes. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据