4.4 Article

Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus

期刊

JOURNAL OF THEORETICAL BIOLOGY
卷 356, 期 -, 页码 174-191

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2014.04.033

关键词

Mathematical model; Disease comparison; Vector-borne disease control; Emerging disease

资金

  1. NIH/NIGMS grant in the Models of Infectious Disease Agent Study (MIDAS) program [U01-GM097661-01]
  2. NSF MPS Division of Mathematical Sciences [DMS-1122666]
  3. NSF SEES Science, Engineering and Education [CHE-1314029]
  4. NIH/NIGMS MIDAS grant [U01-GM097658]
  5. Center for Computational Science at Tulane University
  6. Direct For Mathematical & Physical Scien
  7. Division Of Chemistry [1314029] Funding Source: National Science Foundation
  8. Direct For Mathematical & Physical Scien
  9. Division Of Mathematical Sciences [1122666] Funding Source: National Science Foundation

向作者/读者索取更多资源

Chikungunya and dengue are re-emerging mosquito-borne infectious diseases that are of increasing concern as human travel and expanding mosquito ranges increase the risk of spread. We seek to understand the differences in transient and endemic behavior of chikungunya and dengue; risk of emergence for different virus-vector assemblages; and the role that virus evolution plays in disease dynamics and risk. To address these questions, we adapt a mathematical mosquito-borne disease model to chikungunya and dengue in Aedes aegypti and Aedes albopictus mosquitoes. We derive analytical threshold conditions and important dimensionless parameters for virus transmission; perform sensitivity analysis on quantities of interest such as the basic reproduction number, endemic equilibrium, and first epidemic peak; and compute distributions for the quantities of interest across parameter ranges. We found that chikungunya and dengue exhibit different transient dynamics and long-term endemic levels. While the order of most sensitive parameters is preserved across vector-virus combinations, the magnitude of sensitivity is different across scenarios, indicating that risk of invasion or an outbreak can change with vector-virus assemblages. We found that the dengue - A. aegypti and new Reunion strain of chikungunya - A. albopictus systems represent the highest risk across the range of parameters considered. These results inform future experimental and field research efforts and point toward effective mitigation strategies adapted to each disease. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据