4.4 Article

Prediction of convection-enhanced drug delivery to the human brain

期刊

JOURNAL OF THEORETICAL BIOLOGY
卷 250, 期 1, 页码 125-138

出版社

ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2007.09.009

关键词

convection enhanced; targeted drug delivery; invasive; catheter

向作者/读者索取更多资源

The treatment for many neurodegenerative diseases of the central nervous system (CNS) involves the delivery of large molecular weight drugs to the brain. The blood brain barrier, however, prevents many therapeutic molecules from entering the CNS. Despite much effort in studying drug dispersion with animal models, accurate drug targeting in humans remains a challenge. This article proposes all engineering approach for the systematic design of targeted drug delivery into the human brain. The proposed method predicts achievable volumes of distribution for therapeutic agents based on first principles transport and chemical kinetics models as well as accurate reconstruction of the brain geometry from patient-specific diffusion tensor magnetic resonance imaging. The predictive capabilities of the methodology will be demonstrated for invasive intraparenchymal drug administration. A systematic procedure to determine the optimal infusion and catheter design parameters to maximize penetration depth and volumes of distribution in the target area will be discussed. The computational results are validated with agarose gel phantom experiments. The methodology integrates interdisciplinary expertise from medical imaging and engineering. This approach will allow physicians and scientists to design and optimize drug administration in a systematic fashion. (C) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据