4.5 Article

Geometrical modelling of angle warp interlock fabrics

期刊

JOURNAL OF THE TEXTILE INSTITUTE
卷 103, 期 7, 页码 766-776

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/00405000.2011.606981

关键词

geometrical modelling; three-dimensional fabric reinforcement; carbon tow fabric; multilayer fabric; warp interlock fabric

向作者/读者索取更多资源

A geometrical modelling approach has been developed which predicts all the necessary geometrical parameters for multilayer angle warp interlock weaves. The model requires tow and weaver data as input and gives fabric thickness, warp and weft crimp angle, areal weight and fibre volume fraction (FVF) as outputs. In order to validate the model we have woven three angle warp interlock woven reinforcements, having same number of total layers, on a conventional loom, using carbon multifilament tows in warp and glass multifilament tows in weft. The depth of the binder (maximum number of layers traversed by the binding warp in vertical plane) was maximum for the first variant (5). The binder tow traversed all the five layers so that this variant is termed as through-the-thickness angle interlock. For the second variant it was reduced to an intermediate level (3), whereas for the third one it was minimum (2) so as to conceive a layer-to-layer interlock structure. The geometry of such woven reinforcements can be categorised in terms of crimp amplitude and cross-sectional shape of the warp and weft tows. These two vary with the structure of the woven fabric and weaving parameters, ultimately influencing the areal weight, size of the unit cell and FVF of the fabric reinforcement. Results obtained show that the modelling approach can be successfully applied to calculate necessary fabric geometry parameters from minimum number of manufacturer and weaver data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据