4.6 Article

Underwater attachment using hairs: the functioning of spatula and sucker setae from male diving beetles

期刊

出版社

ROYAL SOC
DOI: 10.1098/rsif.2014.0273

关键词

diving beetles; underwater attachment; biofibrillar adhesives; suction; viscous adhesion; attachment-detachment process

资金

  1. National Science Council (NSC) of Taiwan [99-2112-M-005-004]

向作者/读者索取更多资源

Males of Dytiscinae beetles use specialized adhesive setae to adhere to female elytra during underwater courtship. This coevolution of male setae and female elytra has attracted much attention since Darwin. However, there has been little examination of their biomechanical functioning despite increasing knowledge on biofibrillar adhesion. Here, we report and compare, for the first time, the mechanisms of underwater attachment using two hair types, the primitive spatula and derived 'passive' sucker, found in male diving beetles. Results from interspecific scaling of protarsal palettes and adhesion by single seta suggest better performance in the later-evolved circular (sucker) setae. Spatula setae with a modified shallow sucker and channels use the combined mechanisms of suction and viscous resistance for adhesion. Velocity-dependent adhesion provides sufficient control for resisting the female's erratic movements while also detaching easily through slow peeling. Direction-dependent shear resistance helps reorient setae surfaces into a preferred direction for effective adhesion. Seta deformation using different mechanisms for circular and spatula setae reduces the force that is transmitted to the contact interface. A softer spring in spatula setae explains their adhesion at lower preloads and assists in complete substrate contact. Attachment mechanisms revealed in adhesive setae with modified spatula and passive suckers provide insights for bioinspired designs of underwater attachment devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据