4.6 Article

Scaling law and enhancement of lift generation of an insect-size hovering flexible wing

期刊

出版社

ROYAL SOC
DOI: 10.1098/rsif.2013.0361

关键词

insect flight; flexible wing; fluid - structure interaction; hovering; aerodynamics

资金

  1. Air Force Office of Scientific Research's Multidisciplinary University Research Initiative [FA9550-07-1-0547]

向作者/读者索取更多资源

We report a comprehensive scaling law and novel lift generation mechanisms relevant to the aerodynamic functions of structural flexibility in insect flight. Using a Navier-Stokes equation solver, fully coupled to a structural dynamics solver, we consider the hovering motion of a wing of insect size, in which the dynamics of fluid-structure interaction leads to passive wing rotation. Lift generated on the flexible wing scales with the relative shape deformation parameter, whereas the optimal lift is obtained when the wing deformation synchronizes with the imposed translation, consistent with previously reported observations for fruit flies and honeybees. Systematic comparisons with rigid wings illustrate that the nonlinear response in wing motion results in a greater peak angle compared with a simple harmonic motion, yielding higher lift. Moreover, the compliant wing streamlines its shape via camber deformation to mitigate the nonlinear lift-degrading wing-wake interaction to further enhance lift. These bioinspired aeroelastic mechanisms can be used in the development of flapping wing micro-robots.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据