4.6 Article

Built for rowing: frog muscle is tuned to limb morphology to power swimming

期刊

出版社

ROYAL SOC
DOI: 10.1098/rsif.2013.0236

关键词

muscle; power; rowing; swimming; frogs; robotics

资金

  1. Rowland Institute at Harvard

向作者/读者索取更多资源

Rowing is demanding, in part, because drag on the oars increases as the square of their speed. Hence, as muscles shorten faster, their force capacity falls, whereas drag rises. How do frogs resolve this dilemma to swim rapidly? We predicted that shortening velocity cannot exceed a terminal velocity where muscle and fluid torques balance. This terminal velocity, which is below V-max, depends on gear ratio (GR = outlever/inlever) and webbed foot area. Perhaps such properties of swimmers are 'tuned', enabling shortening speeds of approximately 0.3V(max) for maximal power. Predictions were tested using a 'musculo-robotic' Xenopus laevis foot driven either by a living in vitro or computational in silico plantaris longus muscle. Experiments verified predictions. Our principle finding is that GR ranges from 11.5 to 20 near the predicted optimum for rowing (GR approximate to 11). However, gearing influences muscle power more strongly than foot area. No single morphology is optimal for producing muscle power. Rather, the 'optimal' GR decreases with foot size, implying that rowing ability need not compromise jumping (and vice versa). Thus, despite our neglect of additional forces (e. g. added mass), our model predicts pairings of physiological and morphological properties to confer effective rowing. Beyond frogs, the model may apply across a range of size and complexity from aquatic insects to human-powered rowing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据