4.6 Article

The interfacial structure and Young's modulus of peptide films having switchable mechanical properties

期刊

JOURNAL OF THE ROYAL SOCIETY INTERFACE
卷 5, 期 18, 页码 47-54

出版社

ROYAL SOC
DOI: 10.1098/rsif.2007.1063

关键词

peptide; Young's modulus; interface; film; neutron reflectometry

向作者/读者索取更多资源

We report the structure and Young's modulus of switchable films formed by peptide self-assembly at the air water interface. Peptide surfactant AM1 forms an interfacial film that can be switched, reversibly, from a high- to low-elasticity state, with rapid loss of emulsion and foam stability. Using neutron reflectometry, we find that the AM1 film comprises a thin (approx. 15 angstrom) layer of ordered peptide in both states, confirming that it is possible to drastically alter the mechanical properties of an interfacial ensemble without significantly altering its concentration or macromolecular organization. We also report the first experimentally determined Young's modulus of a peptide film self-assembled at the air water interface (E = 80 MPa for AM1, switching to E < 20 MPa). These findings suggest a fundamental link between E and the macroscopic stability of peptide-containing foam. Finally, we report studies of a designed peptide surfactant, Lac21E, which we find forms a stronger switchable film than AM1 (E = 335 MPa switching to E < 4 MPa). In contrast to AM1, Lac21E switching is caused by peptide dissociation from the interface (i.e. by self-disassembly). This research confirms that small changes in molecular design can lead to similar macroscopic behaviour via surprisingly different mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据