4.4 Article

Model for describing plasmon-enhanced lasers that combines rate equations with finite-difference time-domain

出版社

OPTICAL SOC AMER
DOI: 10.1364/JOSAB.30.002791

关键词

-

类别

资金

  1. Department of Energy, Basic Energy Sciences [DE-FG02-10ER16153]

向作者/读者索取更多资源

We report a theoretical study of lasing when plasmonic metallic structures are embedded in a gain medium. The model used is a dynamic semi-quantum approach that accounts for stimulated and spontaneous emission wherein molecules constituting the laser dye are described using a four-level rate equation model, which is coupled to an electrodynamics description of the entire system including metal particles. Based on 3D simulations in which electromagnetic fields for both the pump and emitted photons are accurately determined for an array of elliptical gold nanorods, we numerically demonstrate lasing action above an intensity threshold for a narrow range of wavelengths close to the plasmon maximum. We also show numerically that this lasing action clamps the population inversion above threshold. The dye molecule photophysics near the nanoparticle was also studied, and it is demonstrated that stimulated emission dominates over spontaneous emission above threshold, with most of the stimulated emission being associated with the near-field region near the metal nanorods. The effect of the Purcell factor on the lasing action is also studied. This theoretical work provides the basic framework for investigation and optimization of light emission arising from the coupling of gain media and plasmonic nanostructures. (C) 2013 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据